3.130 \(\int \frac{c+d x+e x^2}{(a+b x^4)^3} \, dx\)

Optimal. Leaf size=341 \[ -\frac{\left (21 \sqrt{b} c-5 \sqrt{a} e\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{11/4} b^{3/4}}+\frac{\left (21 \sqrt{b} c-5 \sqrt{a} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{11/4} b^{3/4}}-\frac{\left (5 \sqrt{a} e+21 \sqrt{b} c\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}+\frac{\left (5 \sqrt{a} e+21 \sqrt{b} c\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{3 d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{5/2} \sqrt{b}}+\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2} \]

[Out]

(x*(c + d*x + e*x^2))/(8*a*(a + b*x^4)^2) + (x*(7*c + 6*d*x + 5*e*x^2))/(32*a^2*(a + b*x^4)) + (3*d*ArcTan[(Sq
rt[b]*x^2)/Sqrt[a]])/(16*a^(5/2)*Sqrt[b]) - ((21*Sqrt[b]*c + 5*Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/
4)])/(64*Sqrt[2]*a^(11/4)*b^(3/4)) + ((21*Sqrt[b]*c + 5*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(6
4*Sqrt[2]*a^(11/4)*b^(3/4)) - ((21*Sqrt[b]*c - 5*Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*
x^2])/(128*Sqrt[2]*a^(11/4)*b^(3/4)) + ((21*Sqrt[b]*c - 5*Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x +
 Sqrt[b]*x^2])/(128*Sqrt[2]*a^(11/4)*b^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.310719, antiderivative size = 341, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 10, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {1855, 1876, 275, 205, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{\left (21 \sqrt{b} c-5 \sqrt{a} e\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{11/4} b^{3/4}}+\frac{\left (21 \sqrt{b} c-5 \sqrt{a} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{11/4} b^{3/4}}-\frac{\left (5 \sqrt{a} e+21 \sqrt{b} c\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}+\frac{\left (5 \sqrt{a} e+21 \sqrt{b} c\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{3 d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{5/2} \sqrt{b}}+\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x + e*x^2)/(a + b*x^4)^3,x]

[Out]

(x*(c + d*x + e*x^2))/(8*a*(a + b*x^4)^2) + (x*(7*c + 6*d*x + 5*e*x^2))/(32*a^2*(a + b*x^4)) + (3*d*ArcTan[(Sq
rt[b]*x^2)/Sqrt[a]])/(16*a^(5/2)*Sqrt[b]) - ((21*Sqrt[b]*c + 5*Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/
4)])/(64*Sqrt[2]*a^(11/4)*b^(3/4)) + ((21*Sqrt[b]*c + 5*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(6
4*Sqrt[2]*a^(11/4)*b^(3/4)) - ((21*Sqrt[b]*c - 5*Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*
x^2])/(128*Sqrt[2]*a^(11/4)*b^(3/4)) + ((21*Sqrt[b]*c - 5*Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x +
 Sqrt[b]*x^2])/(128*Sqrt[2]*a^(11/4)*b^(3/4))

Rule 1855

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(x*Pq*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Di
st[1/(a*n*(p + 1)), Int[ExpandToSum[n*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b},
 x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{c+d x+e x^2}{\left (a+b x^4\right )^3} \, dx &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}-\frac{\int \frac{-7 c-6 d x-5 e x^2}{\left (a+b x^4\right )^2} \, dx}{8 a}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{\int \frac{21 c+12 d x+5 e x^2}{a+b x^4} \, dx}{32 a^2}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{\int \left (\frac{12 d x}{a+b x^4}+\frac{21 c+5 e x^2}{a+b x^4}\right ) \, dx}{32 a^2}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{\int \frac{21 c+5 e x^2}{a+b x^4} \, dx}{32 a^2}+\frac{(3 d) \int \frac{x}{a+b x^4} \, dx}{8 a^2}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{(3 d) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,x^2\right )}{16 a^2}+\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \int \frac{\sqrt{a} \sqrt{b}-b x^2}{a+b x^4} \, dx}{64 a^2 b}+\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}+5 e\right ) \int \frac{\sqrt{a} \sqrt{b}+b x^2}{a+b x^4} \, dx}{64 a^2 b}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{3 d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{5/2} \sqrt{b}}-\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{128 \sqrt{2} a^{9/4} b^{3/4}}-\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{128 \sqrt{2} a^{9/4} b^{3/4}}+\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}+5 e\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{128 a^2 b}+\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}+5 e\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{128 a^2 b}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{3 d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{5/2} \sqrt{b}}-\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{9/4} b^{3/4}}+\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{9/4} b^{3/4}}+\frac{\left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}-\frac{\left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}\\ &=\frac{x \left (c+d x+e x^2\right )}{8 a \left (a+b x^4\right )^2}+\frac{x \left (7 c+6 d x+5 e x^2\right )}{32 a^2 \left (a+b x^4\right )}+\frac{3 d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{5/2} \sqrt{b}}-\frac{\left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}+\frac{\left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{11/4} b^{3/4}}-\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{9/4} b^{3/4}}+\frac{\left (\frac{21 \sqrt{b} c}{\sqrt{a}}-5 e\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{9/4} b^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.306739, size = 337, normalized size = 0.99 \[ \frac{\frac{\sqrt{2} \left (5 a^{3/4} e-21 \sqrt [4]{a} \sqrt{b} c\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{b^{3/4}}+\frac{\sqrt{2} \left (21 \sqrt [4]{a} \sqrt{b} c-5 a^{3/4} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{b^{3/4}}+\frac{32 a^2 x (c+x (d+e x))}{\left (a+b x^4\right )^2}-\frac{2 \sqrt [4]{a} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (24 \sqrt [4]{a} \sqrt [4]{b} d+5 \sqrt{2} \sqrt{a} e+21 \sqrt{2} \sqrt{b} c\right )}{b^{3/4}}+\frac{2 \sqrt [4]{a} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (-24 \sqrt [4]{a} \sqrt [4]{b} d+5 \sqrt{2} \sqrt{a} e+21 \sqrt{2} \sqrt{b} c\right )}{b^{3/4}}+\frac{8 a x (7 c+x (6 d+5 e x))}{a+b x^4}}{256 a^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x + e*x^2)/(a + b*x^4)^3,x]

[Out]

((32*a^2*x*(c + x*(d + e*x)))/(a + b*x^4)^2 + (8*a*x*(7*c + x*(6*d + 5*e*x)))/(a + b*x^4) - (2*a^(1/4)*(21*Sqr
t[2]*Sqrt[b]*c + 24*a^(1/4)*b^(1/4)*d + 5*Sqrt[2]*Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/b^(3/4)
+ (2*a^(1/4)*(21*Sqrt[2]*Sqrt[b]*c - 24*a^(1/4)*b^(1/4)*d + 5*Sqrt[2]*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x
)/a^(1/4)])/b^(3/4) + (Sqrt[2]*(-21*a^(1/4)*Sqrt[b]*c + 5*a^(3/4)*e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x +
 Sqrt[b]*x^2])/b^(3/4) + (Sqrt[2]*(21*a^(1/4)*Sqrt[b]*c - 5*a^(3/4)*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x
 + Sqrt[b]*x^2])/b^(3/4))/(256*a^3)

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 396, normalized size = 1.2 \begin{align*}{\frac{cx}{8\,a \left ( b{x}^{4}+a \right ) ^{2}}}+{\frac{7\,cx}{32\,{a}^{2} \left ( b{x}^{4}+a \right ) }}+{\frac{21\,c\sqrt{2}}{256\,{a}^{3}}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{21\,c\sqrt{2}}{128\,{a}^{3}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }+{\frac{21\,c\sqrt{2}}{128\,{a}^{3}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) }+{\frac{d{x}^{2}}{8\,a \left ( b{x}^{4}+a \right ) ^{2}}}+{\frac{3\,d{x}^{2}}{16\,{a}^{2} \left ( b{x}^{4}+a \right ) }}+{\frac{3\,d}{16\,{a}^{2}}\arctan \left ({x}^{2}\sqrt{{\frac{b}{a}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{e{x}^{3}}{8\,a \left ( b{x}^{4}+a \right ) ^{2}}}+{\frac{5\,e{x}^{3}}{32\,{a}^{2} \left ( b{x}^{4}+a \right ) }}+{\frac{5\,e\sqrt{2}}{256\,b{a}^{2}}\ln \left ({ \left ({x}^{2}-\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{5\,e\sqrt{2}}{128\,b{a}^{2}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{5\,e\sqrt{2}}{128\,b{a}^{2}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d*x+c)/(b*x^4+a)^3,x)

[Out]

1/8*c*x/a/(b*x^4+a)^2+7/32*c/a^2*x/(b*x^4+a)+21/256*c/a^3*(1/b*a)^(1/4)*2^(1/2)*ln((x^2+(1/b*a)^(1/4)*x*2^(1/2
)+(1/b*a)^(1/2))/(x^2-(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2)))+21/128*c/a^3*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2
)/(1/b*a)^(1/4)*x+1)+21/128*c/a^3*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x-1)+1/8*d*x^2/a/(b*x^4+a
)^2+3/16*d/a^2*x^2/(b*x^4+a)+3/16*d/a^2/(a*b)^(1/2)*arctan(x^2*(b/a)^(1/2))+1/8*e*x^3/a/(b*x^4+a)^2+5/32*e/a^2
*x^3/(b*x^4+a)+5/256*e/a^2/b/(1/b*a)^(1/4)*2^(1/2)*ln((x^2-(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2))/(x^2+(1/b*a)
^(1/4)*x*2^(1/2)+(1/b*a)^(1/2)))+5/128*e/a^2/b/(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x+1)+5/128*e
/a^2/b/(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d*x+c)/(b*x^4+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d*x+c)/(b*x^4+a)^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [A]  time = 10.127, size = 558, normalized size = 1.64 \begin{align*} \operatorname{RootSum}{\left (268435456 t^{4} a^{11} b^{3} + t^{2} \left (6881280 a^{6} b^{2} c e + 4718592 a^{6} b^{2} d^{2}\right ) + t \left (153600 a^{4} b d e^{2} - 2709504 a^{3} b^{2} c^{2} d\right ) + 625 a^{2} e^{4} + 22050 a b c^{2} e^{2} - 60480 a b c d^{2} e + 20736 a b d^{4} + 194481 b^{2} c^{4}, \left ( t \mapsto t \log{\left (x + \frac{262144000 t^{3} a^{10} b^{2} e^{3} - 4624220160 t^{3} a^{9} b^{3} c^{2} e + 12683575296 t^{3} a^{9} b^{3} c d^{2} + 309657600 t^{2} a^{7} b^{2} c d e^{2} - 283115520 t^{2} a^{7} b^{2} d^{3} e + 1820786688 t^{2} a^{6} b^{3} c^{3} d + 5040000 t a^{5} b c e^{4} + 6912000 t a^{5} b d^{2} e^{3} - 118540800 t a^{4} b^{2} c^{3} e^{2} + 365783040 t a^{4} b^{2} c^{2} d^{2} e + 111476736 t a^{4} b^{2} c d^{4} + 522764928 t a^{3} b^{3} c^{5} + 112500 a^{3} d e^{5} + 4536000 a^{2} b c d^{3} e^{2} - 2488320 a^{2} b d^{5} e + 58344300 a b^{2} c^{4} d e - 80015040 a b^{2} c^{3} d^{3}}{15625 a^{3} e^{6} - 275625 a^{2} b c^{2} e^{4} + 3024000 a^{2} b c d^{2} e^{3} - 2073600 a^{2} b d^{4} e^{2} - 4862025 a b^{2} c^{4} e^{2} + 53343360 a b^{2} c^{3} d^{2} e - 36578304 a b^{2} c^{2} d^{4} + 85766121 b^{3} c^{6}} \right )} \right )\right )} + \frac{11 a c x + 10 a d x^{2} + 9 a e x^{3} + 7 b c x^{5} + 6 b d x^{6} + 5 b e x^{7}}{32 a^{4} + 64 a^{3} b x^{4} + 32 a^{2} b^{2} x^{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d*x+c)/(b*x**4+a)**3,x)

[Out]

RootSum(268435456*_t**4*a**11*b**3 + _t**2*(6881280*a**6*b**2*c*e + 4718592*a**6*b**2*d**2) + _t*(153600*a**4*
b*d*e**2 - 2709504*a**3*b**2*c**2*d) + 625*a**2*e**4 + 22050*a*b*c**2*e**2 - 60480*a*b*c*d**2*e + 20736*a*b*d*
*4 + 194481*b**2*c**4, Lambda(_t, _t*log(x + (262144000*_t**3*a**10*b**2*e**3 - 4624220160*_t**3*a**9*b**3*c**
2*e + 12683575296*_t**3*a**9*b**3*c*d**2 + 309657600*_t**2*a**7*b**2*c*d*e**2 - 283115520*_t**2*a**7*b**2*d**3
*e + 1820786688*_t**2*a**6*b**3*c**3*d + 5040000*_t*a**5*b*c*e**4 + 6912000*_t*a**5*b*d**2*e**3 - 118540800*_t
*a**4*b**2*c**3*e**2 + 365783040*_t*a**4*b**2*c**2*d**2*e + 111476736*_t*a**4*b**2*c*d**4 + 522764928*_t*a**3*
b**3*c**5 + 112500*a**3*d*e**5 + 4536000*a**2*b*c*d**3*e**2 - 2488320*a**2*b*d**5*e + 58344300*a*b**2*c**4*d*e
 - 80015040*a*b**2*c**3*d**3)/(15625*a**3*e**6 - 275625*a**2*b*c**2*e**4 + 3024000*a**2*b*c*d**2*e**3 - 207360
0*a**2*b*d**4*e**2 - 4862025*a*b**2*c**4*e**2 + 53343360*a*b**2*c**3*d**2*e - 36578304*a*b**2*c**2*d**4 + 8576
6121*b**3*c**6)))) + (11*a*c*x + 10*a*d*x**2 + 9*a*e*x**3 + 7*b*c*x**5 + 6*b*d*x**6 + 5*b*e*x**7)/(32*a**4 + 6
4*a**3*b*x**4 + 32*a**2*b**2*x**8)

________________________________________________________________________________________

Giac [A]  time = 1.09774, size = 454, normalized size = 1.33 \begin{align*} \frac{5 \, b x^{7} e + 6 \, b d x^{6} + 7 \, b c x^{5} + 9 \, a x^{3} e + 10 \, a d x^{2} + 11 \, a c x}{32 \,{\left (b x^{4} + a\right )}^{2} a^{2}} + \frac{\sqrt{2}{\left (12 \, \sqrt{2} \sqrt{a b} b^{2} d + 21 \, \left (a b^{3}\right )^{\frac{1}{4}} b^{2} c + 5 \, \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{128 \, a^{3} b^{3}} + \frac{\sqrt{2}{\left (12 \, \sqrt{2} \sqrt{a b} b^{2} d + 21 \, \left (a b^{3}\right )^{\frac{1}{4}} b^{2} c + 5 \, \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{128 \, a^{3} b^{3}} + \frac{\sqrt{2}{\left (21 \, \left (a b^{3}\right )^{\frac{1}{4}} b^{2} c - 5 \, \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{256 \, a^{3} b^{3}} - \frac{\sqrt{2}{\left (21 \, \left (a b^{3}\right )^{\frac{1}{4}} b^{2} c - 5 \, \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{256 \, a^{3} b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d*x+c)/(b*x^4+a)^3,x, algorithm="giac")

[Out]

1/32*(5*b*x^7*e + 6*b*d*x^6 + 7*b*c*x^5 + 9*a*x^3*e + 10*a*d*x^2 + 11*a*c*x)/((b*x^4 + a)^2*a^2) + 1/128*sqrt(
2)*(12*sqrt(2)*sqrt(a*b)*b^2*d + 21*(a*b^3)^(1/4)*b^2*c + 5*(a*b^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)
*(a/b)^(1/4))/(a/b)^(1/4))/(a^3*b^3) + 1/128*sqrt(2)*(12*sqrt(2)*sqrt(a*b)*b^2*d + 21*(a*b^3)^(1/4)*b^2*c + 5*
(a*b^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a^3*b^3) + 1/256*sqrt(2)*(21*(a*
b^3)^(1/4)*b^2*c - 5*(a*b^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a^3*b^3) - 1/256*sqrt(2)*(
21*(a*b^3)^(1/4)*b^2*c - 5*(a*b^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a^3*b^3)